γ-glutamyl Spermine Synthetase PauA2 as a potential target of antibiotic development against Pseudomonas aeruginosa.

نویسندگان

  • Xiangyu Yao
  • Congran Li
  • Jianmei Zhang
  • Chung-Dar Lu
چکیده

Polyamines are absolute requirements for cell growth. When in excess, Pseudomonas aeruginosa possesses six γ-glutamylpolyamine synthetases (GPSs) encoded by the pauA1-pauA7 genes to initiate polyamine catabolism. Recently, the pauA2 mutant was reported to lose the capability to grow on spermine (Spm) and spermidine (Spd) as sole carbon and nitrogen sources. Although this mutant grew normally in defined minimal medium and LB broth, growth was completely abolished by the addition of Spm or Spd. These two compounds exert a bactericidal effect (Spm > Spd) on the mutants as demonstrated by MIC measurements (over 500-fold reduction) and time-killing curves. Spm toxicity in the pauA2 mutant was attenuated when the major uptake system was further deleted from the strain, suggesting cytoplasmic targets of toxicity. In addition, the synergistic effect of Spm and carbenicillin in the wild-type strain PAO1 was diminished in mutants without functional PauA2. Furthermore, Spm MIC was reduced by 8-fold when the Spm uptake system was deleted from the wild-type strain, suggesting a second target of Spm toxicity in the periplasm. Experiments were also conducted to test the hypothesis that native Spm and Spd in human serum may be sufficient to kill the pauA2 mutant. Growth of the mutant was completely inhibited by 40% (vol/vol) human serum, whereas the parental strain required 80%. Colony counts indicated that the mutant but not the parent was in fact killed by human plasma. In addition, carbenicillin MIC against the mutant was reduced by 16-fold in the presence of 20% human serum while that of the parental strain remained unchanged. Taking PauA2 as the template, sequence comparison indicates that putative PauA2 homologues are widespread in a variety of Gram-negative bacteria. In summary, this study reveals the importance of GPS in alleviation of polyamine toxicity when in excess, and it provides strong support to the feasibility of GPS as a molecular target for new antibiotic development.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

γ-Glutamyl Spermine Synthetase PauA2 as Potential Target of Antibiotic

22 23 Polyamines are absolute requirements for cell growth. When in excess, P. aeruginosa possesses 24 six γ-glutamylpolyamine synthetases (GPSs) encoded by the pauA1-pauA7 genes to initiate 25 polyamine catabolism. Recently, the pauA2 mutant was reported to lose the capability to grow on 26 spermine (Spm) and spermidine (Spd) as sole carbon and nitrogen sources. Although this mutant 27 grew no...

متن کامل

Evaluation of the synergistic effect of tomatidine with several antibiotics against standard and clinical isolates of Staphylococcus aureus, Enterococcus faecalis, Pseudomonas aeruginosa and Escherichia coli

Antibiotic resistance is an important problem in antibiotic treatment of infections, particularly in hospitals. Tomatidine is a plant secondary metabolite with antimicrobial and antifungal effects. This study examined the possible synergistic effect tomatidine with several antibiotics against standard and clinical strains of Staphylococcus aureus, Enterococcus faecalis, Pseudomonas aeruginosa a...

متن کامل

Evaluation of the synergistic effect of tomatidine with several antibiotics against standard and clinical isolates of Staphylococcus aureus, Enterococcus faecalis, Pseudomonas aeruginosa and Escherichia coli

Antibiotic resistance is an important problem in antibiotic treatment of infections, particularly in hospitals. Tomatidine is a plant secondary metabolite with antimicrobial and antifungal effects. This study examined the possible synergistic effect tomatidine with several antibiotics against standard and clinical strains of Staphylococcus aureus, Enterococcus faecalis, Pseudomonas aeruginosa a...

متن کامل

Cloning of the glutamyl-tRNA synthetase (gltX) gene from Pseudomonas aeruginosa.

The glutamyl-tRNA synthetase (gltX) gene from Pseudomonas aeruginosa was identified. A plasmid containing a 2.3-kb insert complemented the temperature-sensitive gltX mutation of Escherichia coli JP1449, and GltX activity was demonstrated. The inferred amino acid sequence of this gene showed 50.6% identity with GltX from Rhizobium meliloti.

متن کامل

Inhibitory Effect of Iron Oxide Nanoparticles on CTX-M Gene Expression in Extended-Spectrum βeta-Lactamase-Producing Pseudomonas aeruginosa Isolated from Burn Patients

Background and Objective: Burn wound infections caused by Pseudomonas aeruginosa exhibiting β-lactam antibiotic resistance are one of the greatest challenges of antimicrobial treatment. In this context, P. aeruginosa strains harboring resistance mechanisms, such as production of extended-spectrum beta-lactamases have the highest clinical impact no the management of burn wound infections. The ai...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Antimicrobial agents and chemotherapy

دوره 56 10  شماره 

صفحات  -

تاریخ انتشار 2012